
Alternative Title: How to

Enable Standardized

Logging in a Legacy

Environment?

Standardized Event Parsing and
Translation

1 08/30/2011 2011 EMAP Developer Days

Paul Cichonski (NIST)

George Saylor (G2)

Goal of Open Event Expression
Language (OEEL)
 Enable EMAP parsing logic authoring and parsing logic migration and

sharing activities.

 Enable third party tools to transform proprietary log data into a

standardized event data model.

– Decouple from event producer to increase adoption of standardized event

model in legacy environments (i.e., without the need to update all legacy

code).

– To this end, we need a standardized expression language for log

transformation logic to support decoupled translation of proprietary log

data to a standardized format.

2

Proprietary

Log

Format

(The Input)

OEEL

Instructions

Standardized

Log Format

(The Output)

OEEL Validated Product

This is what we are

attempting to standardize.

The Idealized Approach

3

• Workflow diagram represents most

generic use case. Many actions

depicted may operate in pipeline-

type fashion depending on specific

use case (e.g., system may filter

events before applying correlation

rules).

We want to enable

this, regardless of

where the parsing

actually occurs

Parsing could also

happen at query

execution!

We are trying to standardize the data
exchange, not the implementation

 Data exchange happens at the interfaces

between systems.

– The models required to ensure consistent

semantics across system boundaries may be

more expressive than the code needed to execute

the models.

– It is expected that proprietary tools optimize these

exchange models for execution.

We still must ensure that our data exchange

models may be optimized for performance.

4 2011 EMAP Developer Days

Goal of this Meeting

 Brief Ideas: present initial ideas relating to how an

OEEL data model may look, as well as the

complexities related to standardizing log parsing

instructions across a variety of disparate proprietary

syntaxes.

 Solicit Feedback and Requirements: Developer

Days is about discussion; we need to better

understand the community‟s requirements in this

area, and hear your feedback on our initial ideas.

5 08/30/2011 2011 EMAP Developer Days

Cross-Cutting Discussion Issues
 Is this the right approach?

– Either relating to the entire OEEL concept, or just a
specific detail.

– If it is not, please tell us why.

 Does something else already do this?
– We would rather not re-invent the wheel.

– If you are aware of something fulfilling parts of what is
being discussed please tell us.

 Will this work in an operational environment?
– Questions of scale and performance are critical to

success.

– If something is not operationally feasible, please tell us
why.

6 08/30/2011 2011 EMAP Developer Days

OEEL Content Dissemination Approaches
(context for later discussion)

 Assuming there are OEEL validated products
that are able to consume and execute OEEL
parsing instructions. There are three core ways
to disseminate content:
– Global Content Dissemination: Some knowledge

repository (e.g., nvd for logs) provides global OEEL
files, mapping each OEEL file to the CPE it is written
for.

– Local Content Dissemination: Organizations create
their own OEEL content for proprietary products, or to
deal with customized logging.

– Hybrid: There is always a hybrid.

7 08/30/2011 2011 EMAP Developer Days

Let‟s start with a “simple” case

8

Log Source: Apache HTTP Server 2.0 – honeynet challenge

(http://honeynet.org/challenges/2010_5_log_mysteries)

08/30/2011 2011 EMAP Developer Days

http://honeynet.org/challenges/2010_5_log_mysteries

Mapping Apache Access Log to
CEE Format

9 2011 EMAP Developer Days

src_ipv4 ?identd? eff_name time ?request? ?http_status? file_bytes ?referrer? ?user_agent?

CEE Field

Names:

10.0.1.2 - - [19/Apr/2010:06:36:15 -0700] "GET /feed/ HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1"

Native Log:

CEE Tags:

action=get status=success
Will require some type of

conditional logic

08/30/2011

CEE JSON Expression:

{"Event":{“src_ipv4”:”10.0.1.2”,"time":"2010-04-19T06:36:15-07:00“,"action":[“get"], “status":[“success"],

”?request?”:”GET /feed/ HTTP/1.1”:”?http_status?”:”200”:”file_bytes”:”16605”:”?user_agent?”:”Apple-

PubSub/65.12.1”}}

Simple Model (1 of 4) – The High
Level

10 08/30/2011 2011 EMAP Developer Days

<oeel>

 <structured-text-transform>

 <text-input id="http://emap.nist.gov/../input/apache-v2.0/">

 ...

 </text-input>

 <text-output id="http://emap.nist.gov/../output/cee/apache-v2.0"

 ...

 </text-output>

 </rule-transform>

</oeel>

Transform based on

OEEL rules, XSL

transform type also

exists, more on that

later.

Defines the structure of the

input apache log, identified in

a globally unique way to

enable content management.

More on this in next slide.

Defines how the output

format for the new log, also

identified in globally unique

way. More on this in next

slides.

Simple Model (2 of 4) – Defining
the Input Structure

11 2011 EMAP Developer Days

<text-input id="http://emap.nist.gov/oeel/instance/input/apache-v2.0/">

 <input-patterns>

 <field-pattern id="NonWhiteSpace" input-pattern="(\S+)"/>

 <field-pattern id="InBrackets" input-pattern="(\[[^\]]+\])"/>

 <field-pattern id="InQuotes" input-pattern="..."/>

 </input-patterns>

 <input-record record-delimiter="U+000D" field-delimiter="U+0020"

 input-type="text/plain">

 <input-field field-pattern-id="NonWhiteSpace" name="input.ipaddr"

 size="15"/>

 <input-field field-pattern-id="NonWhiteSpace" name="input.ident"

 size="20"/>

 <input-field field-pattern-id="NonWhiteSpace"

 name="input.effName" size="10"/>

 <input-field field-pattern-id="InBrackets" name="input.time"

 size="25"/>

 <input-field field-pattern-id="InQuotes" name="input.request"

 size="512" quoted="U+0022"/>

 <input-field field-pattern-id="NonWhiteSpace"

 name="input.http_status" size="10"/>

 <input-field field-pattern-id="NonWhiteSpace" name="input.size"

 size="10"/>

 <input-field field-pattern-id="InQuotes" name="input.referrer"

 size="512" quoted="U+0022"/>

 <input-field field-pattern-id="InQuotes" name="input.userAgent"

 size="512" quoted="U+0022"/>

 </input-record>

</text-input>

Regex patterns to be

used throughout the

text-input declarations,

always referenced via

their IDs.

Defines the record delimiter

as a carriage return and the

field delimiter as a

whitespace. Individual fields

may override the field

delimiter by specifying a

regex pattern to use in

obtaining the field value.

Defines the structure of an

individual field, also assigns it

a name that will be

referenced in the output

directives.

08/30/2011

Simple Model (3 of 4) – Defining a
Text Output Structure

12 2011 EMAP Developer Days

<text-output id="http://emap.nist.gov/oeel/../apache-v2.0">

 <!-- not JSON, older CEE structured txt based syntax syntax -->

 <output-record record-delimiter="U+000D" field-delimiter="U+0020"

 target-type="text/plain">

 <output-text value="[cee@... "/>

 <output-field name="src_ipv4" value="input.ipaddr" />

 <output-field name="?identd?" value="input.ident"/>

 <output-field name="eff_name" value="input.effName"/>

 ...

 <output-field name="action">
<!-- extract the first word from the variable for evaluating against the conditions -->

 <value cond="input.request" extract="^([A-Za-z]+)">

 <if value="GET">get</if>

 <if value="POST">post</if>

 ...

 </value>

 </output-field>

 <output-field name="status">

 <value cond="input.http_status">

 <if value="200">success</if>

 <if value="400 ">error</if>

 ...

 </value>

 </output-field>

 <output-text value="]"/>

 </output-record>

</text-output>

Defines the record

delimiter as a carriage

return and the field

delimiter as a

whitespace.

Ability to output arbitrary text

values where needed. This is

useful in the context of

defining different syntaxes.

Each output field name joined

to corresponding value

through a „=„. Value comes

from variable defined in input

section (enforced through

xsd:key and xsd:keyref

constructs).

Ability to output different

values based on simple

conditional logic.

08/30/2011

<xml-output id="http://emap.nist.gov/oeel/.../xml/apache-v2.3" >

 <xml-output-record namespace="http://cee.mitre.org" root-

 element="cee" record-element="event" target-type="text/xml">

 <output-element name="src_ipv4" value="input.ipaddr" />

 <output-element name="?identd?" value="input.ident"/>

 <output-element name="eff_name" value="input.effName"/>

 ...

 <output-element name="action">
<!-- extract the first word from the variable for evaluating against the conditions -->

 <value cond="input.request" extract="^([A-Za-z]+)">

 <if value="GET">get</if>

 <if value="POST">post</if>

 ...

 </value>

 </output-element>

 <output-element name="status">

 <value cond="input.http_status" extract="^([A-Za-z]+)">

 <if value="200">success</if>

 <if value="400 ">error</if>

 </value>

 </output-element>

 </xml-output-record>

</xml-output>

Simple Model (4 of 4) – Defining an
XML Output Structure

13 2011 EMAP Developer Days

Defines the document

root element, and the

atomic CEE event

element.

Value comes from variable

defined in input section

(enforced through xsd:key

and xsd:keyref constructs).

Ability to output different

values based on simple

conditional logic.

Possible to define n number

of output types, depending on

community need.

08/30/2011

Should We Make OEEL Output
Model CEE Specific?

 Pros:

– Simpler output model.

– No need to define multiple types of output

syntaxes, just record CEE fields and tags and

point to CEE CLS spec for formatting instructions.

 Cons:

– Tight-coupling with CEE.

– No way to use OEEL with other types of

translation.

14 2011 EMAP Developer Days08/30/2011

Caveat

 The remaining slides assume a CEE specific

output model for ease of illustrating

examples. This DOES NOT mean that OEEL

has to be CEE specific.

15 2011 EMAP Developer Days08/30/2011

Why “simple” cases are not
simple

Customization creates complexity:

16 08/30/2011 2011 EMAP Developer Days

10.0.1.2 - - [19/Apr/2010:06:36:15 -0700] "GET /feed/ HTTP/1.1" 200 16605 "-" "Apple-PubSub/65.12.1"

Defined by: “LogFormat "%h %l %u %t \"%r\" %>s %b \"%{Referer}i\" \"%{User-agent}i\"" combined”

10.0.1.2 - - [19/Apr/2010:06:36:15 -0700] "GET /feed/ HTTP/1.1" 200 16605

Defined by: “LogFormat "%h %l %u %t \"%r\" %>s %b" common”

referrer and user-agent data removed

 LogFormat directive is declared in apache

config file, controlled by sys-admin, not an

OEEL content writer.

 Apache is an easy one.

How to deal with customization (1
of 3)?

 Solution 1: Do nothing:

– Create global-level content that includes all possible

log fields.

– Allow local content disseminators to customize content

based on environment.

 Solution 2: Profiles to associate rule-sets with

common formatting schemes:

– At global content level, only worry about low hanging

fruit, let organizations customize local content.

– This will not scale with the permutations of all different

arrangements of fields.

17 2011 EMAP Developer Days08/30/2011

How to deal with customization (2
of 3)?

 Solution 3: Associate parsing instructions with

formatting directives (see next slide for example):

– Pros:

 Fairly scalable from a content management perspective.

 If done right, this can be extremely flexible. Global content will

contain instructions on all atomic formatting directives and OEEL

validated products can apply this to disparate local cases.

– Cons:

 Will not work for OEEL products that do not have access to Log

Producer. There will be no way to analyze actual formatting

directives.

Model may get rather complex for products other than

Apache.

18 2011 EMAP Developer Days08/30/2011

<structured-text-transform>

 <customization-directive

 id="http://emap.nist.gov/oeel/customization/apache-v2.0/">

 <directive-location extraction-definition-ref="some query def

 that pulls back the LogFormat string"/>

 <directive-parsing-instructions directive-delimeter="U+0020">

 <if value="%h">

 <input-field field-pattern-id="NonWhiteSpace" size="15"/>

 <output-field name="src_ipv4"/>

 </if>

 <if value="%l">

 <input-field field-pattern-id="NonWhiteSpace" size="20"/>

 <output-field name="?identd?"/>

 </if>

 <if value="%>s">

 <input-field field-pattern-id="NonWhiteSpace" size="10"/>

 <output-field name="status">

 <value cond="input.http_status" extract="^([A-Za-

 z]+)">

 <if value="200">success</if>

 <if value="400 ">error</if>

 </value>

 </output-field>

 </if>

 </directive-parsing-instructions>

 </customization-directive>

</structured-text-transform>

How to deal with customization (3
of 3)? – Solution 3 Example

19 2011 EMAP Developer Days19 2011 EMAP Developer Days

References some sort of

check mechanism that

specifies how to find the

customization directive on

Log Producer (OVAL?).

This example is apache

specific, would need to

make model more generic.

Information on how to break

apart the format directive

(whitespace delimited in this

case).

Translation instructions tied

specifically to formatting

directives. Tool would have to

determine how the formatting

directives are actually

arranged and compile the

instruction set accordingly.

A
s
s
u
m

in
g
 C

E
E

 o
u
tp

u
t fo

r e
a
s
e
 o

f e
x
a
m

p
le

08/30/2011

Now let‟s look like at a more
complex log (semi-structured text)

20

Log Source: auth.log - honeynet challenge

(http://honeynet.org/challenges/2010_5_log_mysteries)

08/30/2011 2011 EMAP Developer Days

http://honeynet.org/challenges/2010_5_log_mysteries

Our simple model can‟t handle this
semi-structured text.
 In access logs, every event (i.e., every line) is a

member of the same low-level event class.
– Each event represents a single access to the server.

– Each event has the same syntax and properties.

 In logs like auth.log, every event (i.e., every line)
belongs to the same high-level category of
events (e.g., authentication events).
– However each atomic event may belong to a different

low-level class.

– Each atomic event may represent a different “thing”
and may have different syntax and properties.

 Not possible to simply capture line-to-line
translation instructions.

21 08/30/2011 2011 EMAP Developer Days

Patterns do exist though!

22

Log Source: auth.log - honeynet challenge

(http://honeynet.org/challenges/2010_5_log_mysteries)

08/30/2011 2011 EMAP Developer Days

• Some fields are static

throughout the log (they

are normally on the left.)

• These fields create a

context that determines the

possible patterns of fields

that will follow (tree-like data

structure)

• These fields have a

specific patterns that can be

used to write translation

instructions. It is a matter of

understanding the context to

know what patterns to

search for.

http://honeynet.org/challenges/2010_5_log_mysteries

For example, consider some patterns
around the „login[]‟ context

23 2011 EMAP Developer Days

Mar 16 08:12:04 app-1 login[4659]: pam_unix(login:session): session opened for user user3 by LOGIN(uid=0)

Mar 18 09:41:54 app-1 login[4673]: pam_unix(login:auth): check pass; user unknown

Mar 18 09:41:54 app-1 login[4673]: pam_unix(login:auth): authentication failure; logname=LOGIN uid=0 euid=0 tty=tty1

Native Log:

Instruction Tree:

Static Field

instructions

login[]

instructions

pam_unix()

instructions

session opened

instructions

check pass

instructions

auth failure

instructions

failed login

instructions

Every

contains data on how

to extract value from

line, and how to

translate specific value

into correct CEE fields

and tags.

Instruction block

Mar 18 09:41:56 app-1 login[4673]: FAILED LOGIN (1) on 'tty1' FOR `UNKNOWN', User not known to the underlying authentication module

08/30/2011

Possible XML Representation of
Instruction Tree (1 of 3)

24 2011 EMAP Developer Days

<semi-structured-text-transform>

 <static-field>

 <input-field field-pattern-id="dateTime" size="15"/>

 <output-field name="time"/>

 </static-field>

 <static-field>

 <input-field field-pattern-id="NonWhiteSpace" size="15"/>

 <output-field name="hostname"/>

 </static-field>

 <top-level-parsing-instructions>

 <instruction ref="loginInstruction"/>

 <instruction ref="failedLoginInstruction"/>

 </top-level-parsing-instructions>

 <instruction-declarations>

 ...

 </instruction-declarations>

 <match-tests>

 ...

 </match-tests>

 <field-patterns>

 ...

 </field-patterns>

</semi-structured-text-transform>

First two fields are

static, simply define

how to parse, and

what CEE fields they

should be output to

(this should probably

use simple model from

before).

Top level instructions defining

the root contexts from which

to start navigating down an

instruction tree.

All actual instruction

declarations and parent/child

relationships defined here.

Match tests describing how to

decide if instruction is valid,

and commonly used field-

patterns.

A
s
s
u
m

in
g
 C

E
E

 o
u
tp

u
t fo

r e
a
s
e
 o

f e
x
a
m

p
le

Possible XML Representation of
Instruction Tree (2 of 3)

25 2011 EMAP Developer Days

<instruction-declarations>

 <parsing-instruction id="loginInstruction" match-test-

 ref="loginTest">

 <instruction pattern="pattern to pull pid from login command">

 <capture-group>

<!-- what to do with the first capture group -->

 <output-field name="pid"/>

 </capture-group>

 </instruction>

 <children>

 <child ref="pamUnixInstruction"/>

 </children>

 </parsing-instruction>

 <parsing-instruction id="pamUnixInstruction" match-test-

 ref="pamUnixTest">

 <children>

 <child ref="sessionOpenedInstruction"

 </children>

 </parsing-instruction>

 <parsing-instruction id="failedLoginInstruction" match-test-

 ref="failedLoginTest">

 <children>

 <child ref=""

 </children>

 </parsing-instruction>

 </instruction-declarations>

Parsing instruction for

top-level Login

context.

Instructions on how to use a

regex (not defined) to extract

the PID, as well as what CEE

field name to assign it to.

Child relationship

declarations form tree. See

next slide for

sessionOpenedInstruction.

A
s
s
u
m

in
g
 C

E
E

 o
u
tp

u
t fo

r e
a
s
e
 o

f e
x
a
m

p
le

08/30/2011

Possible XML Representation of
Instruction Tree (3 of 3)

26 2011 EMAP Developer Days

<instruction-declarations>

 ...

 <parsing-instruction id="sessionOpenedInstruction" match-test-

 ref="sessionOpenedTest">

 <instruction pattern="pattern to break up log string for session

 opened">

<!-- always output regardless of what regex returns -->

 <output-field name="action" value="open"/>

 <capture-group>

<!-- first capture group will be username (user3 in slides example) -->

 <output-field name="eff_name"/>

 </capture-group>

 <capture-group>

<!-- second capture group will be grantor (LOGIN in slides example) -->

 <output-field name="eff_grp_id"/>

 </capture-group>

 <capture-group>

<!-- third capture group will be uid (0 in slides example) -->

 <output-field name="eff_id"/>

 </capture-group>

 </instruction>

 </parsing-instruction>

 ...

</instruction-declarations>

Illustrating that

multiple capture

groups may be used in

a regex to pull out

multiple disparate

CEE fields.

A
s
s
u
m

in
g
 C

E
E

 o
u
tp

u
t fo

r e
a
s
e
 o

f e
x
a
m

p
le

08/30/2011

The patterns can be captured in
XML, but will this be useful?

 Previous examples may be extended to

support multiple output types and more

robust testing and value extraction capability.

 This model is semi-complex.

– Is it too complex to be useful (run-time vs batch

processing scenarios).

– What other ways exist to express these complex

patterns and instruction sets?

27 2011 EMAP Developer Days08/30/2011

How do we classify input types to
help organize data model?

We have discussed two possible types of
input, but there are sure to be others:
– structured text (first example)

– semi-structured text (second example)

– non-structured text

– XML

– Other?

 How do we design a model in a way that
allows each disparate input type to have
unique transformation models if needed?

28 08/30/2011 2011 EMAP Developer Days

High Level View – Assign each disparate
input type a unique transform model.

29 2011 EMAP Developer Days

Root Element

Each type of

input has

unique model

for specifying

transformation

directives. The

next slides

discuss these

in detail.

08/30/2011

Structured Text Transform –
Simple model may work here

30 08/30/2011 2011 EMAP Developer Days

Same model as

presented in

initial slides.

Semi Structured Text Transform – Design
transform on context-aware instruction trees

31 2011 EMAP Developer Days

Static Field

instructions

login[]

instructions

pam_unix()

instructions

session opened

instructions

check pass

instructions

auth failure

instructions

failed login

instructions

Every

contains data on how

to extract value from

line, and how to

translate specific value

into correct CEE fields

and tags.

Instruction block

* NOTE: no schema for this exists yet

08/30/2011

Text-Based – Unstructured

 Fully unstructured text is equivalent to

natural language logs.

– No discernable patterns, or a set of patterns that

is too large to enumerate efficiently.

– Presents a machine-consumption problem similar

to those that natural language processing (NLP)

computer scientists have been struggling with for

decades.

 Ideas?

32 08/30/2011 2011 EMAP Developer Days

XSLT Transform – Is it enough to just
delegate to XSLT for XML-based input?

33 08/30/2011 2011 EMAP Developer Days

How to associate an OEEL file to a
product class?

 From a global content dissemination
perspective, every OEEL document must
relate to a specific class of product.
– For example, the initial sample is only for Apache

HTTP Server 2.0.

– It may also be possible to associate a single
OEEL document with a set of product classes if
logging does not change across disparate
versions.

 CPE 2.3 and ISO 19770-2 both offer
mechanisms for encoding this relationship.

34 08/30/2011 2011 EMAP Developer Days

Is many-to-one event record
translation required?

 All previous examples assumed that one
proprietary event record (i.e., one line from a
log) should be translated into a single CEE
event record.

 Do scenarios exist where multiple proprietary
event records (i.e., multiple lines from a log)
should only be translated into a single CEE
event record?
– May occur when a proprietary log uses multiple

lines to express a single event.

– How to support this if needed?

35 08/30/2011 2011 EMAP Developer Days

Is there a way we can get away
from regex?

 Ideas presented rely heavily on regex to

perform the actual parsing. While extremely

powerful, regex-based content can be hard

to read and manage. Is there a better way?

36 08/30/2011 2011 EMAP Developer Days

What are the requirements for
making future decisions?

 Expressiveness/Completeness of data

model?

 Efficiency of data model when translated to

executable code?

 Extensibility of the data model?

Modularity of the data model (e.g., some

tools may not want to support all translation

types)?

Others?

37 2011 EMAP Developer Days

Cross-Cutting Discussion Issues
 Repeated from the beginning.

 Is this the right approach?
– Either relating to the entire OEEL concept, or just a specific

detail.

– If it is not, please tell us why.

 Does something else already do this?
– We would rather not re-invent the wheel.

– If you are aware of something fulfilling parts of what is being
discussed please tell us.

 Will this work in an operational environment?
– Questions of scale and performance are critical to success.

– If something is not operationally feasible, please tell us why.

38 08/30/2011 2011 EMAP Developer Days

Things to think about

What type of capabilities are required for
standardized content management?

 How do we enable tools to create this type of
content? Like other areas within security
automation, we need content creation tools
to make this work.

What types of standardized interfaces will
help support OEEL?
– How to import OEEL content into a tool?

– How to dynamically associate specific OEEL
documents with an asset on a network.

39 2011 EMAP Developer Days08/30/2011

Questions & Answers / Discussion

Paul Cichonski

National Institute of Standards and

Technology (NIST)

paul.cichonski@nist.gov

(301) 975-5259

40 08/30/2011 2011 EMAP Developer Days

mailto:paul.cichonski@nist.gov

EXTRA

41 2011 EMAP Developer Days08/30/2011

